穿孔板聲屏障吸聲結構是一種板厚度和孔徑都小的穿孔板結構,其孔徑一般不大于3mm。微穿孔板吸聲結構同樣屬于共振吸聲結構,其吸聲機理與穿孔板結構也基本相同。與普通穿孔板吸聲結構相比,其特點是吸聲頻帶寬、吸聲系數高,缺點是加工困難、成本高。微穿孔板吸聲結構也可以組合成雙層或多層結構使用,以進一步提高其吸聲性能。
由穿孔板聲屏障構成的共振吸聲結構被稱做穿孔板共振吸聲結構,它也是工程中常用的共振吸聲結構。對于多孔共振吸聲結構,實際上可以看成單孔共振吸聲結構的并聯結構,因此多孔共振吸聲結構的吸聲性能要比單孔共振吸聲結構的吸聲效果好,通過孔參數的優(yōu)化設計,可以有效改善穿孔板聲屏障吸聲頻帶等性能。近年來在浙江地區(qū)所出土的部分東周時期陶瓷標本,無論是在成型還是燒制技術方面都相當成熟,已體現出較高的工藝制作水平,由此引發(fā)了其是否改變了陶瓷史,成為遠早于東漢時期的早瓷器的廣泛爭議.采用多種測試技術,研究了有代表性的浙江東周時期各類陶瓷標本,并通過與東漢時期浙江上虞出土的越窯青瓷的比較,對這批備受關注的精美陶瓷標本的工藝特點、性能指標和器質界定等進行了探討和分析.
穿孔板聲屏障的共振頻率與穿孔板的穿孔率、空腔深度都有關系,與穿孔板孔的直徑和孔厚度也有關系。穿孔板的穿孔面積越大,吸聲頻率就越高;空腔或板的厚度越大,吸聲頻率就越低。為了改變穿孔板的吸聲特性,可以通過改變上述參數以滿足聲學設計上的需要。穿孔板主要用于吸收中、低頻率的噪聲,穿孔板的吸聲系數在0.6左右。多穿孔板的吸聲帶寬定義為,吸聲系數下降到共振時吸聲系數的一半的頻帶寬度為吸聲帶寬,穿孔板的吸聲帶寬較窄,只有幾十赫茲到幾百赫茲。
研究了補償收縮復合膠凝材料的膨脹性能以及水化過程、水化產物及微觀結構等.結果表明:硫鋁酸鈣-氧化鈣類膨脹劑早期膨脹量大、膨脹速度快,更適用于配制高強度等級的補償收縮混凝土;用水量充足時,該類膨脹劑與水泥在水化早期相互促進,用水量不足時,兩者的水化轉變?yōu)橄嗷?膨脹劑的水化速度快于水泥,在低水膠比情況下也能生成大量膨脹性產物鈣礬石,產生理想的膨脹量;在膨脹劑摻量一定的情況下,膨脹劑膨脹效能的發(fā)揮與材料內部微觀結構的致密程度密切相關.
金屬吸聲尖劈隔音屏主要是在金屬板體的底面密布凹設諸多錐底具有一圓形微細孔的三角錐,然后在金屬板體的頂面設具成形為微細波浪型表面,且于波浪型表面上對應橢圓形微細孔處上方周圍亦凹設成形三角錐形。這不僅可增加了裝飾效果,而且因為增加了材料暴露在聲場中的面積,即增加了有效吸聲面積,并使聲波進入到材料深處,可提高尖劈隔音屏的吸聲性能。
金屬吸聲體或吸聲尖劈隔音屏是一種的、自成體系的吸聲結構,它主要由多孔性吸聲材料加尖錐式結構構成,它不需要壁板結構一起形成共振空腔。其特點是吸聲性能好、便于安裝,要求是質量輕、便于施工等。金屬吸聲尖劈隔音屏常采用超細玻璃棉作為填充材料,采用金屬框或H型鋼結構等為支撐架,采用玻璃絲布作為外包裝防水材料,有時也采用穿孔率大于20%的穿孔板作為外包裝。研究了鋼渣粉及不同粒徑范圍鋼渣砂對水泥砂漿早期干燥收縮性能和孔結構的影響.結果表明:在一定摻量范圍內,單摻鋼渣粉或鋼渣砂均能明顯降低水泥砂漿的早期干燥收縮率,當摻量(質量分數)為30%時,改善效果尤為顯著;鋼渣砂粒徑范圍不同,對水泥砂漿早期干燥收縮率的影響有所不同,粒徑小于2.5mm的鋼渣砂具有明顯改善作用.主要原因在于鋼渣粉或鋼渣砂能降低水泥砂漿的孔隙率,優(yōu)化孔結構,提高密實度;相比于鋼渣砂,鋼渣粉對水泥砂漿早期干燥收縮性能和孔結構的改善效果更加顯著,但二者復摻的改善效果并不明顯.
金屬吸聲體的吸聲性能與聲尖劈隔音屏的總長度以及空腔的深度、填充的吸聲材料的吸聲特性等都有關系,吸聲尖劈隔音屏越長,其低頻吸聲性能越好。